Current Issue : January-March Volume : 2024 Issue Number : 1 Articles : 5 Articles
Angiotensin-converting enzyme 2 (ACE2), a key enzyme in the renin–angiotensin system (RAS), is expressed in various tissues and organs, including the central nervous system (CNS). The spike protein of severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2), the virus responsible for coronavirus disease-2019 (COVID-19), binds to ACE2, which raises concerns about the potential for viral infection in the CNS. There are numerous reports suggesting a link between SARS-CoV-2 infection and neurological manifestations. This study aimed to present an updated review of the role of brain RAS components, especially ACE2, in neurological complications induced by SARS-CoV-2 infection. Several routes of SARS-CoV-2 entry into the brain have been proposed. Because an anosmia condition appeared broadly in COVID-19 patients, the olfactory nerve route was suggested as an early pathway for SARS-CoV-2 entry into the brain. In addition, a hematogenous route via disintegrations in the blood–brain barrier following an increase in systemic cytokine and chemokine levels and retrograde axonal transport, especially via the vagus nerve innervating lungs, have been described. Common nonspecific neurological symptoms in COVID-19 patients are myalgia, headache, anosmia, and dysgeusia. However, more severe outcomes include cerebrovascular diseases, cognitive impairment, anxiety, encephalopathy, and stroke. Alterations in brain RAS components such as angiotensin II (Ang II) and ACE2 mediate neurological manifestations of SARS-CoV-2 infection, at least in part. Downregulation of ACE2 due to SARS-CoV-2 infection, followed by an increase in Ang II levels, leads to hyperinflammation and oxidative stress, which in turn accelerates neurodegeneration in the brain. Furthermore, ACE2 downregulation in the hypothalamus induces stress and anxiety responses by increasing corticotropin-releasing hormone. SARS-CoV-2 infection may also dysregulate the CNS neurotransmission, leading to neurological complications observed in severe cases of COVID-19. It can be concluded that the neurological manifestations of COVID-19 may be partially associated with changes in brain RAS components....
Tuberculosis is a contagious disease that has been a concern for humanity throughout history, being recognized and referred to as the white plague. Since ancient times, starting with Hippocrates and Galen of Pergamon, doctors and scientists have attempted to understand the pathogenesis of tuberculosis and its manifestations in the brain. If, in the medieval period, it was believed that only the touch of a king could cure the disease, it was only in the early 17th and 18th centuries that the first descriptions of tuberculous meningitis and the first clinico-pathological correlations began to emerge. While the understanding of neurotuberculosis progressed slowly, it was only after the discovery of the pathogenic agent in the late 19th century that there was an upward curve in the occurrence of treatment methods. This review aims to embark on an odyssey through the centuries, from ancient Egypt to the modern era, and explore the key moments that have contributed to the emergence of a new era of hope in the history of neurotuberculosis. Understanding the history of treatment methods against this disease, from empirical and primitive ones to the emergence of new drugs used in multi-drug-resistant tuberculosis, leads us, once again, to realize the significant contribution of science and medicine in treating a disease that was considered incurable not long ago....
Despite considerable breakthroughs in Parkinson’s disease (PD) research, understanding of non-motor symptoms (NMS) in PD remains limited. The lack of basic level models that can properly recapitulate PD NMS either in vivo or in vitro complicates matters. Even so, recent research advances have identified cardiovascular NMS as being underestimated in PD. Considering that a cardiovascular phenotype reflects sympathetic autonomic dysregulation, cardiovascular symptoms of PD can play a pivotal role in understanding the pathogenesis of PD. In this study, we have reviewed clinical and non-clinical published papers with four key parameters: cardiovascular disease risks, electrocardiograms (ECG), neurocardiac lesions in PD, and fundamental electrophysiological studies that can be linked to the heart. We have highlighted the points and limitations that the reviewed articles have in common. ECG and pathological reports suggested that PD patients may undergo alterations in neurocardiac regulation. The pathological evidence also suggested that the hearts of PD patients were involved in alpha-synucleinopathy. Finally, there is to date little research available that addresses the electrophysiology of in vitro Parkinson’s disease models. For future reference, research that can integrate cardiac electrophysiology and pathological alterations is required....
Background. The hTERT promoter mutation represents a common and early event in hepatocarcinogenesis, but its linkage to the morphological status of the underlying liver tissue is poorly understood. We analyzed the connection between the histopathological changes in tumor-bearing liver tissue and the occurrence of the hTERT promoter mutation in hepatocellular carcinoma (HCC), correlated with clinical data. Methods. The study cohort comprised 160 histologically confirmed HCC in patients with or without cirrhosis that were investigated for the hTERT promoter mutation. We evaluated the frequency of the hTERT promoter mutation in patients with HCC with or without cirrhosis and correlated it with potential clinical and histopathological drivers. In particular, we examined tumor-bearing noncirrhotic liver tissue regarding inflammation; the modified histological activity index (mHAI), fibrosis, and steatosis; and its correlation with the frequency of the hTERT promoter mutation in HCC. We evaluated overall survival with multivariate Cox regression. Furthermore, we compared hTERT antibody immunohistochemistry and molecular hTERT promoter mutation analysis of both HCC and background liver tissue. Results. The hTERT promoter mutation was especially related to HCC in cirrhotic compared with noncirrhotic liver (p < 0:001) and independently of cirrhosis in patients ≥ 60 years (p = 0:005). Furthermore, the hTERT promoter mutation was associated with cirrhosis caused by alcohol toxicity and hepatitis C virus infection. In noncirrhotic liver tissue, the frequency of hTERT-promoter-mutated HCC increased with the degree of inflammation and fibrosis. Nevertheless, 25% of the hTERT-promoter-mutated HCC developed in normal liver tissue without HCC risk factors. Multivariate Cox regression analysis did not reveal an influence of the hTERT promoter mutation in HCC on overall survival at 3, 5, and 16 years. Immunohistochemical analysis with the hTERT antibodies LS-B95 and 2D8 in hTERTpromoter- mutated HCC and hTERT-wildtype HCC showed a mildly stronger immunoreaction compared with the tumor-bearing liver tissue (LS-B95: p < 0:01, 2D8: p < 0:01). Conclusions. Our study reveals a connection between pathological changes in tumorbearing liver tissue and the hTERT promoter mutation in most HCC, even in noncirrhotic liver tissue. Immunohistochemical hTERT antibodies do not discriminate between hTERT-promoter-mutated and wildtype HCC....
Background It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in postacute stage DW-MRI in patients with mTBI. Methods Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DWMRI ≥ 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups. Results The levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001—p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found. Conclusion In patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI....
Loading....